OSI model (Open Systems Interconnection)

What is OSI model (Open Systems Interconnection)?

OSI (Open Systems Interconnection) is a reference model for how applications communicate over a network. This model focuses on providing a visual design of how each communications layer is built on top of the other, starting with the physical cabling, all the way to the application that’s trying to communicate with other devices on a network.

A reference model is a conceptual framework for understanding relationships. The purpose of the OSI reference model is to guide technology vendors and developers so the digital communications products and software programs they create can interoperate and to promote a clear framework that describes the functions of a networking or telecommunications system that’s in use.

Most vendors involved in telecommunications try to describe their products and services in relation to the OSI model. This helps them differentiate among the various transport protocols, addressing schemes and communications packaging methods. And, although it’s useful for guiding discussion and evaluation, the OSI model is theoretical in nature and should be used only as a general guide. That’s because few network products or standard tools keep related functions together in well-defined layers, as is the case in the OSI model. The Transmission Control Protocol/Internet Protocol (TCP/IP) suite, for example, is the most widely used network protocol, but even it doesn’t map cleanly to the OSI model.

History of the OSI model

In the 1970s, technology researchers began examining how computer systems could best communicate with each other. Over the next few years, several competing models were created and published to the community. However, it wasn’t until 1984 when the International Organization for Standardization (ISO) took the best parts of competing networking reference models to propose OSI as a way to finally create a framework that technology companies around the world could use as the basis of their networking technologies.

From ISO’s perspective, the easiest way to create a conceptual model was to organize the models into different abstraction layers required to organize and send data between computing systems. Looking inside each abstracted layer to see the details shows one part of this network communication process. Each layer can be thought of as a separate communication module or piece of the puzzle. But, to actually accomplish the goal of sending data from one device to another, each module must work together.

How the OSI model works

Information technology (IT) networking professionals use OSI to model or conceptualize how data is sent or received over a network. Understanding this is a foundational part of most IT networking certifications, including the Cisco Certified Network Associate (CCNA) and CompTIA Network+ certification programs. As mentioned, the model is designed to break down data transmission standards, processes and protocols over a series of seven layers, each of which is responsible for performing specific tasks concerning sending and receiving data.

The main concept of OSI is that the process of communication between two endpoints in a network can be divided into seven distinct groups of related functions, or layers. Each communicating user or program is on a device that can provide those seven layers of function.

In this architecture, each layer serves the layer above it and, in turn, is served by the layer below it. So, in a given message between users, there will be a flow of data down through the layers in the source computer, across the network and then up through the layers in the receiving computer. Only the application layer at the top of the stack doesn’t provide services to a higher-level layer.

The seven layers of function are provided by a combination of applications, operating systems (OSes), network card device drivers, networking hardware and protocols that enable a system to transmit a signal over a network through various physical mediums, including twisted-pair copper, fiber optics, Wi-Fi or Long-Term Evolution (LTE) with 5G.

7 layers of the OSI model

What is the function of each layer of the OSI model? The seven Open Systems Interconnection layers are the following.

Layer 7. The application layer

The application layer enables the user — human or software — to interact with the application or network whenever the user elects to read messages, transfer files or perform other network-related tasks. Web browsers and other internet-connected apps, such as Outlook and Skype, use Layer 7 application protocols.

Layer 6. The presentation layer

The presentation layer translates or formats data for the application layer based on the semantics or syntax the application accepts. This layer also handles the encryption and decryption that the application layer requires.

Layer 5. The session layer

The session layer sets up, coordinates and terminates conversations between applications. Its services include authentication and reconnection after an interruption. This layer determines how long a system will wait for another application to respond. Examples of session layer protocols include X.225 and Zone Information Protocol (ZIP).

Layer 4. The transport layer

The transport layer is responsible for transferring data across a network and provides error-checking mechanisms and data flow controls. It determines how much data to send, where it gets sent and at what rate. TCP within the TCP/IP suite is the best-known example of the transport layer. This is where the communications select TCP port numbers to categorize and organize data transmissions across a network.

Layer 3. The network layer

The primary function of the network layer is to move data into and through other networks. Network layer protocols accomplish this by packaging data with correct network address information, selecting the appropriate network routes and forwarding the packaged data up the stack to the transport layer. From a TCP/IP perspective, this is where IP addresses are applied for routing purposes.

Layer 2. The data-link layer

The data-link, or protocol layer, in a program handles moving data into and out of a physical link in a network. This layer handles problems that occur as a result of bit transmission errors. It ensures that the pace of the data flow doesn’t overwhelm the sending and receiving devices. This layer also permits the transmission of data to Layer 3, the network layer, where it’s addressed and routed.

The data-link layer can be further divided into two sublayers. The higher layer, which is called logical link control (LLC), is responsible for multiplexing, flow control, acknowledgement and notifying upper layers if transmit/receive (TX/RX) errors occur.

The media access control sublayer is responsible for tracking data frames using MAC addresses of the sending and receiving hardware. It’s also responsible for organizing each frame, marking the starting and ending bits and organizing timing regarding when each frame can be sent along the physical layer medium.

Layer 1. The physical layer

The physical layer transports data using electrical, mechanical or procedural interfaces. This layer is responsible for sending computer bits from one device to another along the network. It determines how physical connections to the network are set up and how bits are represented into predictable signals as they’re transmitted either electrically, optically or via radio waves.

Reference

https://www.techtarget.com/searchnetworking/definition/OSI